

REHAU RAUVISIO noir

Machining of REHAU RAUVISIO noir boards

RAUVISIO noir with its robust HPL surface is a versatile material with a noble matt finish and a velvety soft surface, which is ideal for mechanically demanding horizontal use, e.g. as a worktop in the kitchen or as a counter in a shop.

General machining guidelines

When machining REHAU RAUVISIO noir, the reference values from the table for the selection of the cutting speed (vc) and the tooth feed rate (f_z) should be observed, depending on the machining method.

Machining method	Cutting speed v₀ [m/s]
Sawing	60 - 90
Hogging	60 - 80
Cutting	40 - 70
Boring	0,5 - 2,0

Machining method	Tooth feed rate f₂ [mm]
Sawing	0,05 - 0,12
Hogging	0,12 - 0,16
Cutting	0,40 - 0,70
Boring	0,05 - 0,15

Photo: REHAU Industries SE & Co. KG

These parameters are in relation to the tool diameter (D), number of teeth (Z), RPM (n) and feed speed (v_f) used on the processing machine. The right selection of these factors is responsible for a good machining result.

The following formulas apply to the calculation of cutting speed, tooth feed rate and feed speed:

v_c - Cutting speed [m/s]

 $v_c = D \cdot \pi \cdot n / 60 \cdot 1000$

D – Tool diameter [mm]

n – RPM of tool [min⁻¹]

fz - Tooth feed rate [mm]

 $f_z = v_f \cdot 1000 / n \cdot z$

v_f - Feed speed [m/min]

n – RPM of tool [min⁻¹]

z - Number of teeth

REHAU RAUVISIO noir

v_f - Feed speed [m/min-1]

 $v_f = f_z \cdot n \cdot z / 1000$

fz - Tooth feed rate [mm]

n – RPM of tool [min-1]

z - Number of teeth

General tool

For optimum edge quality, tools with new or newly repaired cutting edges are recommended.

Cutting material

Basically, both tools with carbide cutting edges (HW) and diamond cutting edges (DP diamond polycrystalline) can be used. The use of tools with diamond cutting edges (DP) is recommended in order to extend the tool life at high cutting volume.

Cutting the panels with circular sawblades

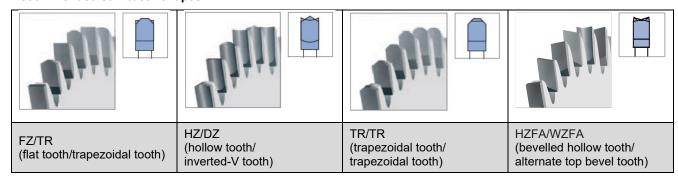
General note:

- Visible side (decorative side with foil) upwards
- Make sure that the sawblade protrudes correctly (see table)
- Adjust RPM and number of teeth to feed speed
- The use of a scoring sawblade is recommended for precise cuts on the bottom side of the panel

Depending on the sawblade protrusion, the entry and exit angle and thus the quality of the cutting edge change. If the top cutting edge becomes rough, set the sawblade higher. If the cut on the bottom side is rough, the sawblade must be set lower. In this way the most favorable height setting must be determined.

The following sawblade protrusions (Ü) must be set for sizing and panel sizing saws, depending on the diameter (D):

Circular sawblade diameter D [mm]	Protrusions Ü [mm]
250	
300	
350	ca. 5 - 10
400	
450	



Sawblades with a high number of teeth are generally recommended for good machining quality. For circular sawing, the recommended cutting speed (vc) is 60 - 90 m/s.

REHAU RAUVISIO noir

Recommended saw tooth shapes

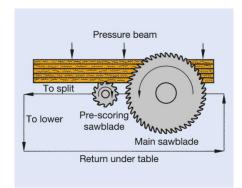
Sizing sawblades

with the saw tooth shape hollow tooth/inverted-V tooth (HZ/DZ) ensure the best cutting results. The saw tooth shape flat tooth/trapezoidal tooth (FZ/TR) also provides good cutting results with a slightly higher tool life compared to HZ/DZ. WhisperCut circular sawblades with DP cutting material are recommended for easy machining. WhisperCut circular sawblades produce up to 10 dB(A) less noise and can be used with standard splitting wedges on machines with scoring unit.

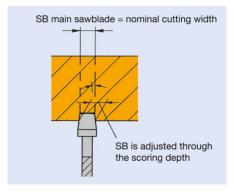
Panel sizing sawblades

with saw tooth shape combinations such as flat / trapezoidal tooth (FZ/TR) or trapezoidal / trapezoidal tooth (TR/TR) are recommended for this purpose. The Leitz RazorCut (TR/TR) saw type achieves the best cutting quality here.

Dimensions DxSBxBO [mm]	Tooth shape	No. of teeth Z	RPM n [min ⁻¹]	Feed speed v _f [m/min]
300x3.2x30	FZ/TR	96	4,000	Manual feed
303x3.2x30	HZ/DZ	68	4,000	Manual feed
380x4.8x60	FZ/TR	72	4,500	20 - 40
380x4.8x60	TR/TR	72	4,500	20 - 40


Other dimensions available on request

Scoring sawblades


With REHAU RAUVISIO noir, the use of a scoring unit is recommended to achieve good cutting edge quality on the tooth exit side. The cutting width of the scoring sawblade must be set slightly larger than that of the main circular sawblade so that the exiting tooth of the main saw can no longer touch the cutting edge. Divided scoring sawblades are used on circular saw benches and sizing saw machines.

REHAU RAUVISIO noir

Panel sizing system with scoring unit and pressure device

blade. When repairing the tools, it is recommended to sharpen the scoring saws with the main saws in a set.

Application diagram of conical scoring saw-

All dimensions available on request

Jointing on table milling machine or throughfeed systems

In order to produce edges free of break-outs on the cover layers of the panel, jointing tools with alternate shear angles should be used. Diamond cutterheads such as Leitz WhisperCut® with a shear angle of 30° to 50° are recommended. The chip removal should be as low as possible and not exceed 2 mm.

For good cutting results, it is advantageous to use tools with high concentricity and balancing quality which are achieved by using centering adaptors such as hydraulic clamping systems, HSK holders or shrink-fit clamping systems.

Only tools marked "MAN" or "BG-Test" may be used when working with manual feed on table milling machines. Furthermore, for safety reasons, the speed range specified on the tool must not be exceeded or fallen short of. The tools for manual feed may only be used when running against the feed.

The application parameters of the jointing cutters should be selected so that the tooth feed (fz) is between 0.4 and 0.7 mm. The DP-WhisperCut® version is recommended for perfect cutting results.

REHAU RAUVISIO noir

Dimensions DxSBxBO	RPM n	No. of teeth	Feed speed v _f	ID, DP Whi	sperCut [®]	Machine
[mm]	[min ⁻¹]	Z	[m/min]	LH	RH	machine
85x43x30	12,000	3	14 - 20	192209	192210	Ott
100x43x30	12,000	2	9 - 16	192082	192083	Stefani, Holz Her
100x43x30	12,000	2	9 - 16	192233	192234	Hebrock, EBM
100x43x30	12,000	3	14 - 20	192088	192088	Biesse
100x43x30	12,000	3	14 - 20	090885	090886	Brandt
125x32x30	9,000	3	10 - 20	192092	192093	IMA
125x43x30	9,000	3	10 - 20	075627	075627	Homag, Biesse
125x43x30	9,000	3	10 - 20	192094	192095	IMA

Other dimensions available on request

For the highest quality requirements, the use of Leitz EdgeExpert tools is recommended.

Dimensions DxSBxBO	RPM n	No. of teeth	Feed speed v _f	ID DP WhisperCut	•	Machine
[mm]	[min ⁻¹]	Z	[m/min]	LH	RH	
125x43x30	9,000	3	10 - 20	192249	192249	Biesse
125x63x30	9,000	3	10 - 20	192250	192250	Biesse
125x43x30	9,000	3	10 - 20	192249	192249	Homag
125x43x30	9,000	3	10 - 20	192251	192252	IMA
125x63x30	9,000	3	10 - 20	192301	192302	IMA

Other dimensions available on request

Leitz Diamaster WhisperCut® EdgeExpert

REHAU RAUVISIO noir

Hoggers for throughfeed machines

Diamond compact hoggers, which generate little friction and cutting pressure, are recommended. The Leitz Diamaster DT Premium type mounted on a hydraulic clamping element is particularly suitable for maximum radial and axial runout and excellent machining quality and tool life. The cutting speed (vc) is 80 m/s at the usual speed (n) 6000 min⁻¹ and diameter (D) 250 mm. The application parameters and the number of teeth of the hoggers should be selected so that the tooth feed (f₂) is between 0.12 - 0.16 mm.

Dimensions	RPM n	No. of teeth Z	Feed speed	ID, DT	Premium
DxSBxBO [mm]	[min ⁻¹]	No. of teeth 2	v _f [m/min]	LH	RH
250x10x60	6,000	24	15 - 24	190410	190411
250x10x60	6,000	36	25 - 35	190418	190419
250x10x60	6,000	48	35 - 45	190426	190427
250x10x60	6,000	60	45 - 55	190434	190435

Other dimensions available on request

Leitz DT Premium hogger

REHAU RAUVISIO noir

Groove processing

For groove processing, tools with a high number of teeth should preferably be selected for optimum edge quality. The tooth feed rate (f₂) should be in the range of 0.03 - 0.06 mm when machining with feed (GLL).

Diameter D [mm]	RPM n [min ⁻¹]	No. of teeth Z	Feed speed v _f [m/min]
180	6,000	36	7 - 14
200	6,000	48	8 - 16

Other dimensions available on request

CNC Stationary machines

Spiral solid carbide cutters (VHW) or preferably diamond tipped (DP) routers are best suited for machining on router and machining centres.

Good workpiece clamping on the machine must be ensured. To support the vacuum suction devices, additional mechanical fixtures can be used if necessary. We recommend stable and rigid Leitz Thermo-Grip® shrink chucks for maximum concentricity, balancing quality and perfect cutting quality. A good machining result can only be achieved with sufficient rigidity of the machine. Rigid portal machines are perfect.

Recommended application data:

RPM n = $20,000 - 24,000 \text{ min}^{-1}$

Full cut feed rate (v_f):

Z1 = 8 m/minZ2 = 16 m/minZ3 = 24 m/min

Dimensions DxNLxS [mm]	No. of teeth Z	Direction of rotation	Version	ID
16x28x20	2 + 2	RH	Diamaster PRO	191042
20x28x20	2 + 2	RH	Diamaster QUATTRO	091235
20x28x20	3 + 3	RH	Diamaster PLUS³	191051
20x32x20	2 + 2	RH	Diamaster QUATTRO EdgeExpert	191071
12x24x12	2 + 2	RH	Diamaster PRO, Nesting	191060

Other dimensions available on request

Leitz Diamaster EdgeExpert

REHAU RAUVISIO noir

Boring

Preferably diamond-tipped or solid carbide (VHW) spiral drills or dowel and hinge boring bits are used for drilling.

On CNC machining centers, it is recommended to use the hinge boring bits in the main spindle instead of in the drilling beam. Drilling for dowel and hinge boring holes takes place on the counter-drawing side of the "mineral fiber material side".

Application data

Dowel drill

RPM n = $4,000 - 6,000 \text{ min}^{-1}$ Feed speed $v_f = 0.5 - 1.5 \text{ m/min}$ Drilling mode: L - S

Through-hole boring bit RPM n = $4,000 - 8,000 \text{ min}^{-1}$

Feed speed $v_f = 0.5 - 1.5 - 0.5 \text{ m/min}$ Drilling mode: L - S - L

Hinge boring bit

RPM n = $3,000 - 6,000 \text{ min}^{-1}$ Feed speed v_f = 1 - 2 m/min Drilling mode: L - S

Examples of Leitz dowel drill, through-hole boring bit and hinge boring bit (HW, DP)

Dowel drills, through-hole boring bits and hinge boring bits

Desima	D	NL	GL	7	II	D
Design	[mm]	[mm]	[mm]	Z	LH	RH
HW-solid dowel drill Excellent	5	35	70	Z2/V2	033496	033497
HW-solid dowel drill Excellent	8	35	70	Z2/V2	033500	033501
HW-solid through-hole boring bit Excellent	5	35	70	Z2	034100	034101
HW-solid through-hole boring bit Excellent	8	35	70	Z2	034104	034105
DP-through-hole boring bit	5	30	70	Z1	091186	091185
DP-through-hole boring bit	8	30	70	Z1	091192	091191

REHAU RAUVISIO noir

Desim	D	NL	GL	7	II	D
Design	[mm]	[mm]	[mm]	Z	LH	RH
HW-solid hinge boring bit	15	70		Z2/bevel	130073401	130073400
HW-solid hinge boring bit	20	70		Z2/bevel	130073403	130073402
HW-solid hinge boring bit	25	70		Z2/bevel	130073405	130073404
HW-solid hinge boring bit	26	70		Z2/bevel	130073407	130073406
HW-solid hinge boring bit	30	70		Z2/bevel	130073409	130073408
HW-solid hinge boring bit	35	70		Z2/bevel	130073411	130073410
DP-hinge boring bit	15	70		Z2/V2		191023
DP-hinge boring bit	25	70		Z2/V2		191197
DP-hinge boring bit	35	70		Z2/V2	091184	091183

Performance times

Tool performance times are influenced by a variety of factors, so that no performance time statements or rights can be derived within the scope of this machining guideline. The information on the tools and machining parameters are recommended guide values. Machine or process constellations can lead to deviating parameters. An optimal adaptation of machine, tool and material as well as customer-specific requirements can only be carried out on site together with a Leitz application engineer.

REHAU RAUVISIO noir

Explanation of abbreviations

A	= dimension A	LH	= left hand rotation
a _a	cutting thickness (radial)		
a,	cutting depth (axial)	M	= metric thread
Ϋ́ВМ	= dimension	MBM	 minimum order quantity
APL .	 panel raising length 	MC	 multi-purpose steel, coated
PT	= panel raising depth	MD	= thickness of knife
L.	= working length	min ⁻¹	= revolutions per minute (RPM)
M	= number of knives	MK	= morse taper
AS	= anti sound (low noise design)	m min ⁻¹	· · · · · · · · · · · · · · · · · · ·
10	= anti sound (low noise design)		
)		m s ⁻¹	= metres per second
	= overhang		DDM
3	= width	n	= RPM
BDD	 thickness of shoulder 	n _{max} .	 maximum permissible RPM
BEM	= note	NAL	= position of hub
BEZ .	= description	ND	 thickness of hub
3H	 tipping height 	NH	zero height
3O	bore diameter	NL	 cutting length
		NLA	 pinhole dimensions
CNC	 Computerized Numerical Control 	NT	= grooving depth
			- greening depair
l	= diameter	P	= profile
)	 cutting circle diameter 	POS	= cutter position
00	 zero diameter 	PT	 profile depth
)A	 outside Diameter 	PG	 profile group
DB	 diameter of shoulder 		
DFC	 Dust Flow Control (optimised chip clearance) 	QAL	 cutting material quality
OGI	= number of links		
OIK	= thickness	R	= radius
OKN	= double keyway	RD.	= right hand twist
)P	= polycrystalline diamond	RH	= right hand rotation
DRI	= rotation	RP	= radius of cutter
JRI	= rotation	RP	= radius of cutter
AB	= width of rebate	S	= shank dimension
AT	= depth of rebate	SB	= cutting width
AW	= bevel angle	SET	= set
LD	= flange diameter	SLB	 slotting width
,	= tooth feed	SLL	= slotting length
z z off	= effective tooth feed	SLT	= slotting depth
z off	= chective tooth reed	SP	= tool steel
GEW	= thread	ST	= Cobalt-basis cast alloys,
acvv GL		31	
	= total length	0.70	e.g. Stellit®
GS	 Plunging edge 	STO	= shank tolerance
	1.11	SW	= cutting angle
IC IC	= height	TD	diameter of tool back:
	= tungsten carbide, coated		= diameter of tool body
ID.	 wood thickness (thickness of workpiece) 	TDI	= thickness of tool
IL.	 high-alloyed tool steel 	TG	= pitch
HS .	high-speed steel (HSS)	TK	= reference diameter
-W	tungsten carbide (TCT)		
		UT	 cutting edges with irregular pitch
D V	= ident number	V	= number of spurs
V	 insulation glazing 	-	
(D7	11 12	v _c	= cutting speed
BZ	= abbreviation	V,	= feed speed
(LH	 clamping height 	VE	= packing unit
M	= edge breaker	VSB	 adjustment range
OLI .	 single keyway 		
\N	a substitution in the language of	WSS	 workpiece material
	 combination pinhole consists of 	*****	
	= combination pinnole consists of 2/7/42 2/9/46,35 2/10/60		<u> </u>
KN KNL	· · · · · · · · · · · · · · · · · · ·	Z	= number of teeth
	· · · · · · · · · · · · · · · · · · ·		<u> </u>
KNL	2/7/42 2/9/46,35 2/10/60	Z	= number of teeth
KNL	2/7/42 2/9/46,35 2/10/60 = length	Z ZA	= number of teeth = number of fingers

In the present machining recommendation, corresponding parameters for the optimum machining of the designated materials are presented. The information on tools and machining parameters are standard values without any claim to completeness and general validity. Machine-related or process-related boundary conditions can lead to deviating application parameters. In individual cases, individual adjustments may be necessary. In particular, the respective manufacturer's specifications regarding the intended use of the machine, tools and material must be observed. No rights can be derived from this machining recommendation. For the solution of complex tasks, please contact our technical consultant.

The information is based on the current state of the art and was compiled with special care and in accordance to the best of our knowledge. Through continuous technical development